简述
决策树是一种用于分类或回归等监督学习问题的算法。决策树或分类树是其中每个内部(非叶)节点都用输入特征标记的树。来自标记有特征的节点的弧被标记为特征的每个可能值。树的每个叶子都标有一个类或类的概率分布。
可以通过基于属性值测试将源集拆分为子集来“学习”树。这个过程以递归方式在每个派生的子集上重复,称为recursive partitioning. 当节点处的子集具有目标变量的所有相同值时,或者当拆分不再为预测增加值时,递归完成。这种自上而下归纳决策树的过程是贪心算法的一个例子,也是学习决策树最常用的策略。
数据挖掘中使用的决策树有两种主要类型 -
决策树是一种简单的方法,因此存在一些问题。其中一个问题是决策树产生的结果模型的高方差。为了缓解这个问题,开发了决策树的集成方法。目前广泛使用两组集成方法 -
# Install the party package
# install.packages('party')
library(party)
library(ggplot2)
head(diamonds)
# We will predict the cut of diamonds using the features available in the
diamonds dataset.
ct = ctree(cut ~ ., data = diamonds)
# plot(ct, main="Conditional Inference Tree")
# Example output
# Response: cut
# Inputs: carat, color, clarity, depth, table, price, x, y, z
# Number of observations: 53940
#
# 1) table <= 57; criterion = 1, statistic = 10131.878
# 2) depth <= 63; criterion = 1, statistic = 8377.279
# 3) table <= 56.4; criterion = 1, statistic = 226.423
# 4) z <= 2.64; criterion = 1, statistic = 70.393
# 5) clarity <= VS1; criterion = 0.989, statistic = 10.48
# 6) color <= E; criterion = 0.997, statistic = 12.829
# 7)* weights = 82
# 6) color > E
#Table of prediction errors
table(predict(ct), diamonds$cut)
# Fair Good Very Good Premium Ideal
# Fair 1388 171 17 0 14
# Good 102 2912 499 26 27
# Very Good 54 998 3334 249 355
# Premium 44 711 5054 11915 1167
# Ideal 22 114 3178 1601 19988
# Estimated class probabilities
probs = predict(ct, newdata = diamonds, type = "prob")
probs = do.call(rbind, probs)
head(probs)