Pandas - 索引和选择数据
-
简述
在本章中,我们将讨论如何对日期进行切片和切块,以及如何获取 pandas 对象的子集。Python 和 NumPy 索引运算符“[]”和属性运算符“.” 在广泛的用例中提供对 Pandas 数据结构的快速轻松访问。但是,由于事先不知道要访问的数据的类型,因此直接使用标准运算符有一些优化限制。对于生产代码,我们建议您利用本章中介绍的优化的 pandas 数据访问方法。Pandas 现在支持三种类型的多轴索引;下表中提到了这三种类型 -序号 索引和描述 1 .loc()基于标签2 .iloc()基于整数3 .ix()基于标签和整数 -
.loc()
熊猫提供了各种方法来纯粹label based indexing. 切片时,还包括起始边界。整数是有效的标签,但它们指的是标签而不是位置。.loc()有多种访问方法,如 -- 单个标量标签
- 标签列表
- 切片对象
- 布尔数组
loc采用两个由“,”分隔的单/列表/范围运算符。第一个表示行,第二个表示列。示例 1
#import the pandas library and aliasing as pd import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) #select all rows for a specific column print df.loc[:,'A']
它的输出如下 -a 0.391548 b -0.070649 c -0.317212 d -2.162406 e 2.202797 f 0.613709 g 1.050559 h 1.122680 Name: A, dtype: float64
示例 2
# import the pandas library and aliasing as pd import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) # Select all rows for multiple columns, say list[] print df.loc[:,['A','C']]
它的输出如下 -A C a 0.391548 0.745623 b -0.070649 1.620406 c -0.317212 1.448365 d -2.162406 -0.873557 e 2.202797 0.528067 f 0.613709 0.286414 g 1.050559 0.216526 h 1.122680 -1.621420
示例 3
# import the pandas library and aliasing as pd import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) # Select few rows for multiple columns, say list[] print df.loc[['a','b','f','h'],['A','C']]
它的输出如下 -A C a 0.391548 0.745623 b -0.070649 1.620406 f 0.613709 0.286414 h 1.122680 -1.621420
示例 4
# import the pandas library and aliasing as pd import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) # Select range of rows for all columns print df.loc['a':'h']
它的输出如下 -A B C D a 0.391548 -0.224297 0.745623 0.054301 b -0.070649 -0.880130 1.620406 1.419743 c -0.317212 -1.929698 1.448365 0.616899 d -2.162406 0.614256 -0.873557 1.093958 e 2.202797 -2.315915 0.528067 0.612482 f 0.613709 -0.157674 0.286414 -0.500517 g 1.050559 -2.272099 0.216526 0.928449 h 1.122680 0.324368 -1.621420 -0.741470
示例 5
# import the pandas library and aliasing as pd import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) # for getting values with a boolean array print df.loc['a']>0
它的输出如下 -A False B True C False D False Name: a, dtype: bool
-
.loc ()
Pandas 提供了各种方法来获得基于整数的索引。像 python 和 numpy 一样,这些是0-based索引。各种访问方法如下 -- 一个整数
- 整数列表
- 范围值
示例 1
# import the pandas library and aliasing as pd import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # select all rows for a specific column print df.iloc[:4]
它的输出如下 -A B C D 0 0.699435 0.256239 -1.270702 -0.645195 1 -0.685354 0.890791 -0.813012 0.631615 2 -0.783192 -0.531378 0.025070 0.230806 3 0.539042 -1.284314 0.826977 -0.026251
示例 2
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # Integer slicing print df.iloc[:4] print df.iloc[1:5, 2:4]
它的输出如下 -A B C D 0 0.699435 0.256239 -1.270702 -0.645195 1 -0.685354 0.890791 -0.813012 0.631615 2 -0.783192 -0.531378 0.025070 0.230806 3 0.539042 -1.284314 0.826977 -0.026251 C D 1 -0.813012 0.631615 2 0.025070 0.230806 3 0.826977 -0.026251 4 1.423332 1.130568
示例 3
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # Slicing through list of values print df.iloc[[1, 3, 5], [1, 3]] print df.iloc[1:3, :] print df.iloc[:,1:3]
它的输出如下 -B D 1 0.890791 0.631615 3 -1.284314 -0.026251 5 -0.512888 -0.518930 A B C D 1 -0.685354 0.890791 -0.813012 0.631615 2 -0.783192 -0.531378 0.025070 0.230806 B C 0 0.256239 -1.270702 1 0.890791 -0.813012 2 -0.531378 0.025070 3 -1.284314 0.826977 4 -0.460729 1.423332 5 -0.512888 0.581409 6 -1.204853 0.098060 7 -0.947857 0.641358
-
.ix ()
除了基于纯标签和基于整数之外,Pandas 还提供了一种使用 .ix() 运算符选择和子集对象的混合方法。示例 1
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # Integer slicing print df.ix[:4]
它的输出如下 -A B C D 0 0.699435 0.256239 -1.270702 -0.645195 1 -0.685354 0.890791 -0.813012 0.631615 2 -0.783192 -0.531378 0.025070 0.230806 3 0.539042 -1.284314 0.826977 -0.026251
示例 2
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # Index slicing print df.ix[:,'A']
它的输出如下 -0 0.699435 1 -0.685354 2 -0.783192 3 0.539042 4 -1.044209 5 -1.415411 6 1.062095 7 0.994204 Name: A, dtype: float64
-
符号的使用
使用多轴索引从 Pandas 对象中获取值使用以下符号 -目的 索引器 返回类型 Series s.loc[indexer] 标量值 DataFrame df.loc[row_index,col_index] 系列对象 Panel p.loc[item_index,major_index,minor_index] p.loc[item_index,major_index,minor_index] 注意 − .iloc() & .ix()应用相同的索引选项和返回值。现在让我们看看如何在 DataFrame 对象上执行每个操作。我们将使用基本的索引运算符 '[ ]' -示例 1
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) print df['A']
它的输出如下 -0 -0.478893 1 0.391931 2 0.336825 3 -1.055102 4 -0.165218 5 -0.328641 6 0.567721 7 -0.759399 Name: A, dtype: float64
注意− 我们可以将值列表传递给 [ ] 以选择这些列。示例 2
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) print df[['A','B']]
它的输出如下 -A B 0 -0.478893 -0.606311 1 0.391931 -0.949025 2 0.336825 0.093717 3 -1.055102 -0.012944 4 -0.165218 1.550310 5 -0.328641 -0.226363 6 0.567721 -0.312585 7 -0.759399 -0.372696
示例 3
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) print df[2:2]
它的输出如下 -Columns: [A, B, C, D] Index: []
属性访问
可以使用属性运算符“.”来选择列。例子
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) print df.A
它的输出如下 -0 -0.478893 1 0.391931 2 0.336825 3 -1.055102 4 -0.165218 5 -0.328641 6 0.567721 7 -0.759399 Name: A, dtype: float64