Python - 数据科学 JSON 数据

  • 简述

    JSON 文件将数据存储为人类可读格式的文本。JSON 代表 JavaScript 对象表示法。Pandas 可以使用read_json功能。
  • 输入数据

    通过将以下数据复制到记事本等文本编辑器中来创建 JSON 文件。保存文件.json扩展名并选择文件类型为all files(*.*).
    
    { 
       "ID":["1","2","3","4","5","6","7","8" ],
       "Name":["Rick","Dan","Michelle","Ryan","Gary","Nina","Simon","Guru" ]
       "Salary":["623.3","515.2","611","729","843.25","578","632.8","722.5" ],
       
       "StartDate":[ "1/1/2012","9/23/2013","11/15/2014","5/11/2014","3/27/2015","5/21/2013",
          "7/30/2013","6/17/2014"],
       "Dept":[ "IT","Operations","IT","HR","Finance","IT","Operations","Finance"]
    }
    
  • 阅读 JSON 文件

    read_jsonpandas 库的函数可用于将 JSON 文件读入 pandas DataFrame。
    
    import pandas as pd
    data = pd.read_json('path/input.json')
    print (data)
    
    当我们执行上面的代码时,它会产生以下结果。
    
             Dept  ID    Name  Salary   StartDate
    0          IT   1    Rick  623.30    1/1/2012
    1  Operations   2     Dan  515.20   9/23/2013
    2          IT   3   Tusar  611.00  11/15/2014
    3          HR   4    Ryan  729.00   5/11/2014
    4     Finance   5    Gary  843.25   3/27/2015
    5          IT   6   Rasmi  578.00   5/21/2013
    6  Operations   7  Pranab  632.80   7/30/2013
    7     Finance   8    Guru  722.50   6/17/2014
    
  • 阅读特定的列和行

    与我们在上一章中已经看到的读取 CSV 文件类似,read_jsonpandas 库的函数也可以用于在将 JSON 文件读取到 DataFrame 后读取一些特定的列和特定的行。我们使用称为多轴索引的方法.loc()以此目的。我们选择为某些行显示 Salary 和 Name 列。
    
    import pandas as pd
    data = pd.read_json('path/input.xlsx')
    # Use the multi-axes indexing funtion
    print (data.loc[[1,3,5],['salary','name']])
    
    当我们执行上面的代码时,它会产生以下结果。
    
       salary   name
    1   515.2    Dan
    3   729.0   Ryan
    5   578.0  Rasmi
    
  • 将 JSON 文件读取为记录

    我们也可以应用to_json函数与参数一起将 JSON 文件内容读入单个记录。
    
    import pandas as pd
    data = pd.read_json('path/input.xlsx')
    print(data.to_json(orient='records', lines=True))
    
    当我们执行上面的代码时,它会产生以下结果。
    
    {"Dept":"IT","ID":1,"Name":"Rick","Salary":623.3,"StartDate":"1\/1\/2012"}
    {"Dept":"Operations","ID":2,"Name":"Dan","Salary":515.2,"StartDate":"9\/23\/2013"}
    {"Dept":"IT","ID":3,"Name":"Tusar","Salary":611.0,"StartDate":"11\/15\/2014"}
    {"Dept":"HR","ID":4,"Name":"Ryan","Salary":729.0,"StartDate":"5\/11\/2014"}
    {"Dept":"Finance","ID":5,"Name":"Gary","Salary":843.25,"StartDate":"3\/27\/2015"}
    {"Dept":"IT","ID":6,"Name":"Rasmi","Salary":578.0,"StartDate":"5\/21\/2013"}
    {"Dept":"Operations","ID":7,"Name":"Pranab","Salary":632.8,"StartDate":"7\/30\/2013"}
    {"Dept":"Finance","ID":8,"Name":"Guru","Salary":722.5,"StartDate":"6\/17\/2014"}