Python - 数据科学 JSON 数据
-
简述
JSON 文件将数据存储为人类可读格式的文本。JSON 代表 JavaScript 对象表示法。Pandas 可以使用read_json功能。 -
输入数据
通过将以下数据复制到记事本等文本编辑器中来创建 JSON 文件。保存文件.json扩展名并选择文件类型为all files(*.*).{ "ID":["1","2","3","4","5","6","7","8" ], "Name":["Rick","Dan","Michelle","Ryan","Gary","Nina","Simon","Guru" ] "Salary":["623.3","515.2","611","729","843.25","578","632.8","722.5" ], "StartDate":[ "1/1/2012","9/23/2013","11/15/2014","5/11/2014","3/27/2015","5/21/2013", "7/30/2013","6/17/2014"], "Dept":[ "IT","Operations","IT","HR","Finance","IT","Operations","Finance"] }
-
阅读 JSON 文件
read_jsonpandas 库的函数可用于将 JSON 文件读入 pandas DataFrame。import pandas as pd data = pd.read_json('path/input.json') print (data)
当我们执行上面的代码时,它会产生以下结果。Dept ID Name Salary StartDate 0 IT 1 Rick 623.30 1/1/2012 1 Operations 2 Dan 515.20 9/23/2013 2 IT 3 Tusar 611.00 11/15/2014 3 HR 4 Ryan 729.00 5/11/2014 4 Finance 5 Gary 843.25 3/27/2015 5 IT 6 Rasmi 578.00 5/21/2013 6 Operations 7 Pranab 632.80 7/30/2013 7 Finance 8 Guru 722.50 6/17/2014
-
阅读特定的列和行
与我们在上一章中已经看到的读取 CSV 文件类似,read_jsonpandas 库的函数也可以用于在将 JSON 文件读取到 DataFrame 后读取一些特定的列和特定的行。我们使用称为多轴索引的方法.loc()以此目的。我们选择为某些行显示 Salary 和 Name 列。import pandas as pd data = pd.read_json('path/input.xlsx') # Use the multi-axes indexing funtion print (data.loc[[1,3,5],['salary','name']])
当我们执行上面的代码时,它会产生以下结果。salary name 1 515.2 Dan 3 729.0 Ryan 5 578.0 Rasmi
-
将 JSON 文件读取为记录
我们也可以应用to_json函数与参数一起将 JSON 文件内容读入单个记录。import pandas as pd data = pd.read_json('path/input.xlsx') print(data.to_json(orient='records', lines=True))
当我们执行上面的代码时,它会产生以下结果。{"Dept":"IT","ID":1,"Name":"Rick","Salary":623.3,"StartDate":"1\/1\/2012"} {"Dept":"Operations","ID":2,"Name":"Dan","Salary":515.2,"StartDate":"9\/23\/2013"} {"Dept":"IT","ID":3,"Name":"Tusar","Salary":611.0,"StartDate":"11\/15\/2014"} {"Dept":"HR","ID":4,"Name":"Ryan","Salary":729.0,"StartDate":"5\/11\/2014"} {"Dept":"Finance","ID":5,"Name":"Gary","Salary":843.25,"StartDate":"3\/27\/2015"} {"Dept":"IT","ID":6,"Name":"Rasmi","Salary":578.0,"StartDate":"5\/21\/2013"} {"Dept":"Operations","ID":7,"Name":"Pranab","Salary":632.8,"StartDate":"7\/30\/2013"} {"Dept":"Finance","ID":8,"Name":"Guru","Salary":722.5,"StartDate":"6\/17\/2014"}