Python 机器学习标准偏差
-
什么是标准偏差?
标准偏差是一个数字,描述值的分散程度。低标准偏差意味着大多数数字接近均值(平均值)。高标准偏差表示这些值分布在更宽的范围内。示例:这次我们已经注册了7辆车的速度:speed = [86,87,88,86,87,85,86]
标准偏差为:0.9意味着大多数值在平均值的0.9范围内,即86.4。让我们对范围更广的数字进行选择:speed = [32,111,138,28,59,77,97]
标准偏差为:37.85意味着大多数值在平均值的37.85范围内,即77.4。如您所见,较高的标准偏差表示这些值分布在较宽的范围内。NumPy模块有一种计算标准偏差的方法:提示:numpy模块不是内置模块,需要用pip安装才可以使用。
使用NumPy std()方法查找标准偏差:import numpy speed = [86,87,88,86,87,85,86] x = numpy.std(speed) print(x)
输出如下所示:import numpy speed = [32,111,138,28,59,77,97] x = numpy.std(speed) print(x)
输出如下所示: -
方差
方差是另一个数字,指示值的分散程度。实际上,如果采用方差的平方根,就可以得到标准方差! 或反之,如果将标准偏差乘以自身,就可以得到方差!要计算方差,您必须执行以下操作:1.找到均值:(32+111+138+28+59+77+97) = 77.4
2.对于每个值:找到与平均值的差:32 - 77.4 = -45.4 111 - 77.4 = 33.6 138 - 77.4 = 60.6 28 - 77.4 = -49.4 59 - 77.4 = -18.4 77 - 77.4 = - 0.4 97 - 77.4 = 19.6
3.对于每个差异:找到平方值:(-45.4)2 = 2061.16 (33.6)2 = 1128.96 (60.6)2 = 3672.36 (-49.4)2 = 2440.36 (-18.4)2 = 338.56 (- 0.4)2 = 0.16 (19.6)2 = 384.16
4.方差是这些平方差的平均值:(2061.16+1128.96+3672.36+2440.36+338.56+0.16+384.16) / 7 = 1432.2
幸运的是,NumPy有一种计算方差的方法:使用NumPy var()方法查找方差:import numpy speed = [32,111,138,28,59,77,97] x = numpy.var(speed) print(x)
输出如下所示: -
标准偏差
如我们所知,找到标准偏差的公式是方差的平方根:√1432.25 = 37.85
或者,如前例所示,使用NumPy计算标准差:使用NumPy std()方法查找标准偏差:import numpy speed = [32,111,138,28,59,77,97] x = numpy.std(speed) print(x)
-
符号
标准偏差通常用Sigma符号来表示:σ方差通常由符号Sigma[西格玛]的平方:σ2 -
章节总结
标准偏差和方差是机器学习中经常使用的术语,因此了解如何获取它们以及它们背后的概念非常重要。