R 语言 数据帧

  • 数据帧

    数据帧数据帧是表或二维数组状结构,其中每一列包含一个变量的值,每一行包含来自每一列的一组值。
    s
    以下是数据帧的特征。
    • 列名应为非空。
    • 行名应该是唯一的。
    • 存储在数据帧中的数据可以是数字,因子或字符类型。
    • 每列应包含相同数量的数据项。
  • 创建数据帧

     
    # Create the data frame.
    emp.data <- data.frame(
       emp_id = c (1:5), 
       emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
       salary = c(623.3,515.2,611.0,729.0,843.25), 
       
       start_date = as.Date(c("2019-01-01", "2020-09-23", "2014-11-15", "2014-05-11",
          "2015-03-27")),
       stringsAsFactors = FALSE
    )
    # Print the data frame.                 
    print(emp.data) 
    
    尝试一下
    当我们执行以上代码时,它产生以下结果-
     
     emp_id    emp_name     salary     start_date
    1     1     Rick        623.30     2019-01-01
    2     2     Dan         515.20     2020-09-23
    3     3     Michelle    611.00     2014-11-15
    4     4     Ryan        729.00     2014-05-11
    5     5     Gary        843.25     2015-03-27
    
  • 获取数据帧的结构

    通过使用str()函数可以看到数据帧的结构。
     
    # Create the data frame.
    emp.data <- data.frame(
       emp_id = c (1:5), 
       emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
       salary = c(623.3,515.2,611.0,729.0,843.25), 
       
       start_date = as.Date(c("2019-01-01", "2020-09-23", "2014-11-15", "2014-05-11",
          "2015-03-27")),
       stringsAsFactors = FALSE
    )
    # Get the structure of the data frame.
    str(emp.data)
    
    尝试一下
    当我们执行以上代码时,它产生以下结果-
     
    'data.frame':   5 obs. of  4 variables:
     $ emp_id    : int  1 2 3 4 5
     $ emp_name  : chr  "Rick" "Dan" "Michelle" "Ryan" ...
     $ salary    : num  623 515 611 729 843
     $ start_date: Date, format: "2019-01-01" "2020-09-23" "2014-11-15" "2014-05-11" ...
    
  • 数据帧中的数据摘要

    统计摘要和数据性质可以通过应用summary()函数获得。
    
    # Create the data frame.
    emp.data <- data.frame(
       emp_id = c (1:5), 
       emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
       salary = c(623.3,515.2,611.0,729.0,843.25), 
       
       start_date = as.Date(c("2019-01-01", "2020-09-23", "2014-11-15", "2014-05-11",
          "2015-03-27")),
       stringsAsFactors = FALSE
    )
    # Print the summary.
    print(summary(emp.data))  
    
    尝试一下
    当我们执行以上代码时,它产生以下结果-
    
         emp_id    emp_name             salary        start_date        
     Min.   :1   Length:5           Min.   :515.2   Min.   :2019-01-01  
     1st Qu.:2   Class :character   1st Qu.:611.0   1st Qu.:2020-09-23  
     Median :3   Mode  :character   Median :623.3   Median :2014-05-11  
     Mean   :3                      Mean   :664.4   Mean   :2014-01-14  
     3rd Qu.:4                      3rd Qu.:729.0   3rd Qu.:2014-11-15  
     Max.   :5                      Max.   :843.2   Max.   :2015-03-27 
    
  • 从数据帧中提取数据

    使用列名从数据帧中提取特定的列。
    
    # Create the data frame.
    emp.data <- data.frame(
       emp_id = c (1:5),
       emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
       salary = c(623.3,515.2,611.0,729.0,843.25),
       
       start_date = as.Date(c("2019-01-01","2020-09-23","2014-11-15","2014-05-11",
          "2015-03-27")),
       stringsAsFactors = FALSE
    )
    # Extract Specific columns.
    result <- data.frame(emp.data$emp_name,emp.data$salary)
    print(result)
    
    尝试一下
    当我们执行以上代码时,它产生以下结果-
    
      emp.data.emp_name emp.data.salary
    1              Rick          623.30
    2               Dan          515.20
    3          Michelle          611.00
    4              Ryan          729.00
    5              Gary          843.25
    
    提取前两行,然后提取所有列
    
    # Create the data frame.
    emp.data <- data.frame(
       emp_id = c (1:5),
       emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
       salary = c(623.3,515.2,611.0,729.0,843.25),
       
       start_date = as.Date(c("2019-01-01", "2020-09-23", "2014-11-15", "2014-05-11",
          "2015-03-27")),
       stringsAsFactors = FALSE
    )
    # Extract first two rows.
    result <- emp.data[1:2,]
    print(result)
    
    尝试一下
    当我们执行以上代码时,它产生以下结果-
    
      emp_id    emp_name   salary    start_date
    1      1     Rick      623.3     2019-01-01
    2      2     Dan       515.2     2020-09-23
    
    提取3和5行与2和4
    
    # Create the data frame.
    emp.data <- data.frame(
       emp_id = c (1:5), 
       emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
       salary = c(623.3,515.2,611.0,729.0,843.25), 
       
            start_date = as.Date(c("2019-01-01", "2020-09-23", "2014-11-15", "2014-05-11",
          "2015-03-27")),
       stringsAsFactors = FALSE
    )
    
    # Extract 3rd and 5th row with 2nd and 4th column.
    result <- emp.data[c(3,5),c(2,4)]
    print(result)
    
    尝试一下
    当我们执行以上代码时,它产生以下结果-
    
      emp_name start_date
    3 Michelle 2014-11-15
    5     Gary 2015-03-27
    
  • 扩展数据帧

    可以通过添加列和行来扩展数据帧。
    添加列
    只需使用新的列名添加列向量即可。
    
    # Create the data frame.
    emp.data <- data.frame(
       emp_id = c (1:5), 
       emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
       salary = c(623.3,515.2,611.0,729.0,843.25), 
       
       start_date = as.Date(c("2019-01-01", "2020-09-23", "2014-11-15", "2014-05-11",
          "2015-03-27")),
       stringsAsFactors = FALSE
    )
    
    # Add the "dept" coulmn.
    emp.data$dept <- c("IT","Operations","IT","HR","Finance")
    v <- emp.data
    print(v)
    
    尝试一下
    当我们执行以上代码时,它产生以下结果-
    
      emp_id   emp_name    salary    start_date       dept
    1     1    Rick        623.30    2019-01-01       IT
    2     2    Dan         515.20    2020-09-23       Operations
    3     3    Michelle    611.00    2014-11-15       IT
    4     4    Ryan        729.00    2014-05-11       HR
    5     5    Gary        843.25    2015-03-27       Finance
    
    添加行
    要将更多行永久添加到现有数据帧,我们需要以与现有数据帧相同的结构引入新行,并使用rbind()函数。在下面的示例中,我们使用新行创建一个数据帧,并将其与现有数据帧合并以创建最终数据帧。
    
    # Create the first data frame.
    emp.data <- data.frame(
       emp_id = c (1:5), 
       emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
       salary = c(623.3,515.2,611.0,729.0,843.25), 
       
       start_date = as.Date(c("2019-01-01", "2020-09-23", "2014-11-15", "2014-05-11",
          "2015-03-27")),
       dept = c("IT","Operations","IT","HR","Finance"),
       stringsAsFactors = FALSE
    )
    
    # Create the second data frame
    emp.newdata <-       data.frame(
       emp_id = c (6:8), 
       emp_name = c("Rasmi","Pranab","Tusar"),
       salary = c(578.0,722.5,632.8), 
       start_date = as.Date(c("2020-05-21","2020-07-30","2014-06-17")),
       dept = c("IT","Operations","Fianance"),
       stringsAsFactors = FALSE
    )
    
    # Bind the two data frames.
    emp.finaldata <- rbind(emp.data,emp.newdata)
    print(emp.finaldata)
    
    尝试一下
    当我们执行以上代码时,它产生以下结果-
    
      emp_id     emp_name    salary     start_date       dept
    1      1     Rick        623.30     2019-01-01       IT
    2      2     Dan         515.20     2020-09-23       Operations
    3      3     Michelle    611.00     2014-11-15       IT
    4      4     Ryan        729.00     2014-05-11       HR
    5      5     Gary        843.25     2015-03-27       Finance
    6      6     Rasmi       578.00     2020-05-21       IT
    7      7     Pranab      722.50     2020-07-30       Operations
    8      8     Tusar       632.80     2014-06-17       Fianance