R 语言 矩阵
-
矩阵
矩阵是R对象,其中元素以二维矩形布局排列。它们包含相同原子类型的元素。尽管我们可以创建仅包含字符或仅包含逻辑值的矩阵,但是它们的用处不大。我们使用包含数值元素的矩阵进行数学计算。使用matrix()函数创建一个矩阵。在R中创建矩阵的基本语法是-matrix(data, nrow, ncol, byrow, dimnames)
以下是所用参数的描述-- data - 是输入向量,它成为矩阵的数据元素。
- nrow - 是要创建的行数。
- ncol - 是要创建的列数。
- byrow - 是合乎逻辑的行。如果为TRUE,则输入矢量元素按行排列。
- dimname - 是分配给行和列的名称。
创建一个以数字向量为输入的矩阵。
尝试一下# Elements are arranged sequentially by row. M <- matrix(c(3:14), nrow = 4, byrow = TRUE) print(M) # Elements are arranged sequentially by column. N <- matrix(c(3:14), nrow = 4, byrow = FALSE) print(N) # Define the column and row names. rownames = c("row1", "row2", "row3", "row4") colnames = c("col1", "col2", "col3") P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames)) print(P)
当我们执行以上代码时,它产生以下结果-[,1] [,2] [,3] [1,] 3 4 5 [2,] 6 7 8 [3,] 9 10 11 [4,] 12 13 14 [,1] [,2] [,3] [1,] 3 7 11 [2,] 4 8 12 [3,] 5 9 13 [4,] 6 10 14 col1 col2 col3 row1 3 4 5 row2 6 7 8 row3 9 10 11 row4 12 13 14
-
访问矩阵元素
可以通过使用元素的列索引和行索引来访问矩阵的元素。我们考虑上面的矩阵P来找到下面的特定元素。
尝试一下# Define the column and row names. rownames = c("row1", "row2", "row3", "row4") colnames = c("col1", "col2", "col3") # Create the matrix. P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames)) # Access the element at 3rd column and 1st row. print(P[1,3]) # Access the element at 2nd column and 4th row. print(P[4,2]) # Access only the 2nd row. print(P[2,]) # Access only the 3rd column. print(P[,3])
当我们执行以上代码时,它产生以下结果-[1] 5 [1] 13 col1 col2 col3 6 7 8 row1 row2 row3 row4 5 8 11 14
-
矩阵计算
使用R运算符可对矩阵执行各种数学运算。运算结果也是一个矩阵。该操作涉及的矩阵的尺寸(行数和列数)应相同。矩阵加减法
尝试一下# Create two 2x3 matrices. matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2) print(matrix1) matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2) print(matrix2) # Add the matrices. result <- matrix1 + matrix2 cat("Result of addition","\n") print(result) # Subtract the matrices result <- matrix1 - matrix2 cat("Result of subtraction","\n") print(result)
当我们执行以上代码时,它产生以下结果-[,1] [,2] [,3] [1,] 3 -1 2 [2,] 9 4 6 [,1] [,2] [,3] [1,] 5 0 3 [2,] 2 9 4 Result of addition [,1] [,2] [,3] [1,] 8 -1 5 [2,] 11 13 10 Result of subtraction [,1] [,2] [,3] [1,] -2 -1 -1 [2,] 7 -5 2
矩阵乘法与除法
尝试一下# Create two 2x3 matrices. matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2) print(matrix1) matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2) print(matrix2) # Multiply the matrices. result <- matrix1 * matrix2 cat("Result of multiplication","\n") print(result) # Divide the matrices result <- matrix1 / matrix2 cat("Result of division","\n") print(result)
当我们执行以上代码时,它产生以下结果-[,1] [,2] [,3] [1,] 3 -1 2 [2,] 9 4 6 [,1] [,2] [,3] [1,] 5 0 3 [2,] 2 9 4 Result of multiplication [,1] [,2] [,3] [1,] 15 0 6 [2,] 18 36 24 Result of division [,1] [,2] [,3] [1,] 0.6 -Inf 0.6666667 [2,] 4.5 0.4444444 1.5000000